Towards ParadisEO-MO-GPU: A Framework for GPU-Based Local Search Metaheuristics
نویسندگان
چکیده
This paper is a major step towards a pioneering software framework for the reusable design and implementation of parallel metaheuristics on Graphics Processing Units (GPU). The objective is to revisit the ParadisEO framework to allow its utilization on GPU accelerators. The focus is on local search metaheuristics and the parallel exploration of their neighborhood. The challenge is to make the GPU as transparent as possible for the user. The first release of the new GPU-based ParadisEO framework has been experimented on the Quadratic Assignment Problem (QAP). The preliminary results are convincing, both in terms of flexibility and easiness of reuse at implementation, and in terms of efficiency at execution on GPU.
منابع مشابه
Research Report: GPU-based Approaches for Hybrid Metaheuristics
In combinatorial optimization, near-optimal algorithms such as metaheuristics allow to iteratively solve in a reasonable time NP-hard complex problems. Two main categories of metaheuristics are distinguished: population-based metaheuristics (P-metaheuristics) and solution-based metaheuristics (S-metaheuristics). P-metaheuristics are population-oriented as they manage a whole population of solut...
متن کاملParallel local search on GPU and CPU with OpenCL Language
Real-world optimization problems are very complex and NP-hard. The modeling of such problems is in constant evolution in term of constraints and objectives and their resolution is expensive in computation time. With all this change, even metaheuristics, well known for their efficiency, begin to be overtaken by data explosion. Recently, Thanks to the publication of languages as OpenCL and CUDA, ...
متن کاملParadisEO-MO: from fitness landscape analysis to efficient local search algorithms
This document presents a general-purpose software framework dedicated to the design, the analysis and the implementation of local search algorithms: ParadisEO-MO. A substantial number of single-solution based local search metaheuristics has been proposed so far, and an attempt of unifying existing approaches is here presented. Based on a fine-grained decomposition, a conceptual model is propose...
متن کاملParaDisEO-Based Design of Parallel and Distributed Evolutionary Algorithms
ParaDisEO is a framework dedicated to the design of parallel and distributed metaheuristics including local search methods and evolutionary algorithms. This paper focuses on the latter aspect. We present the three parallel and distributed models implemented in ParaDisEO and show how these can be exploited in a user-friendly, flexible and transparent way. These models can be deployed on distribu...
متن کاملSolution Level Parallelization of Local Search Metaheuristic Algorithm on GPU
Local search metaheuristic algorithms are proven & powerful combinatorial optimization strategies to tackle hard problems like traveling salesman problem. These algorithms explore & evaluate neighbors of a single solution. Time Consuming LSM algorithms can be improved by parallelizing exploration & evaluation of neighbors of a solution. GPU architecture is suitable for algorithms of single prog...
متن کامل